Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different threat stimuli in rats.
نویسندگان
چکیده
Lesions of the dorsal premammillary nucleus (PMd) have been reported to produce dramatic reductions in responsivity of rats to a live cat. Such lesions provide a means of analyzing the potentially differential neural systems involved in different defensive behaviors, and the relationship between these systems and concepts such as anxiety. Rats with bilateral electrolytic lesions of the PMd were run in an elevated plus maze (EPM), exposed first to cat odor and then to a live cat, and assessed for postshock freezing and locomotion. PMd lesions produced a dramatic reduction in freezing, avoidance, and stretch attend to the cat odor stimulus, and reduction in freezing, with greater activity, and enhanced stretch approach to cat exposure. However, PMd lesions had minimal effects in the EPM, and postshock freezing scores were unchanged. These results confirm earlier findings of reduced defensiveness of PMd-lesioned rats to a cat, extending the pattern of reduced defensiveness to cat odor stimuli as well, but also suggest that such lesions have few effects on nonolfactory threat stimuli.
منابع مشابه
Blockade of NMDA or NO in the dorsal premammillary nucleus attenuates defensive behaviors
The dorsal premammillary nucleus (PMd) is a hypothalamic structure that plays a pivotal role in the processing of predatory threats. Lesions of this nucleus virtually eliminate the expression of defensive responses to predator exposure. However, little is known about the neurotransmitters responsible for these behavioral responses. Since PMd neurons express ionotropic glutamate receptors and ex...
متن کاملDissecting the brain's fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders.
Effective defense against natural threats in the environment is essential for the survival of individual animals. Thus, instinctive behavioral responses accompanied by fear have evolved to protect individuals from predators and from opponents of the same species (dominant conspecifics). While it has been suggested that all perceived environmental threats trigger the same set of innately determi...
متن کاملHypothalamic sites responding to predator threats--the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior.
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying ...
متن کاملTemporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacolo...
متن کاملNeural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam.
Cat odor elicits a profound defensive reaction in rats that is reduced by benzodiazepine drugs. The neural correlates of this phenomenon were investigated here using Fos immunohistochemistry. Rats received either midazolam (0.75 mg/kg, s.c.) or vehicle and were exposed to pieces of a collar that had been worn by a domestic cat or an unworn (dummy) collar. Cat odor caused midazolam-sensitive def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 345 3 شماره
صفحات -
تاریخ انتشار 2003